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HYPERION RESEARCH OPINION 

The pace of change within the HPC-AI market continues accelerating across all fronts, including the 

storage system. Traditional workloads such as seismic processing, life sciences, and weather analysis  

typically relied on checkpoint/restart mechanisms to periodically capture the state of 

modeling/simulation onto scratch storage to protect against system failure. Users were forgiving and 

could support the time to rerun failed simulations. Fast forward to today, AI training and inferencing 

has become prominent for recent generative AI applications as well as for the augmentation of 

traditional  HPC modeling and simulation. Users have become much less forgiving as the cost of 

rerunning a training job could run into the millions of dollars and the value of the data itself is 

substantial, delivering unprecedented scientific and business value to researchers and companies in 

both traditional HPC and commercial enterprise markets. 

When specifying and prioritizing requirements for new on-premises for HPC-AI systems, users almost 

universally place a performance-related metric at the top of their list. These metrics are typically defined as 

some combination of the following factors such as: raw bandwidth, throughput, and/or latency; 

price/performance; performance improvement target compared with existing user domain-specific 

application benchmarks; time to results or time to science. All elements of a system's architecture, including 

computing, networking, and the storage or data platform, are encompassed by the above factors. 

Users, however, should be concerned with more than only performance for their solutions, especially 

relative to the data platform, as the amount of data required to deliver value from AI and modeling and 

simulation workloads is exponentially increasing. Secure, reliable, and performant storage doesn't just 

happen. Best-in-class storage solutions require a deep understanding of items beyond performance. 

Items such as reliability, availability, serviceability, usability, and installability (colloquially referred to as 

RASUI or "the -abilities") are equally as critical as performance. More recently, durability, or the 

confidence that data remains unchanged and free from corruption or loss, has emerged as an 

additional -ability to consider in determining leadership criteria for HPC-AI storage systems. 

Understanding availability and durability is especially critical as users increasingly turn to cloud-based 

storage resources for appropriate workloads, where durability is well-established with some having been 

architected for extreme durability levels. As the cost of generating the data, and the value of the data 

itself, being stored far surpasses the expense of the HPC storage system, comparing availability and 

durability between on-premises and cloud-based resources needs to become an increased area of focus 

for users. 



©2024 Hyperion Research #HR4.0495.10.31.2024 2 | P a g e  

 

MARKET OVERVIEW 

Storage represents a sizable portion of what users spend overall for their on-premises advanced HPC-

AI infrastructure. The storage market is projected to grow to $9.79B in 2028, or 22.2% of the overall 

market. Figure 1 provides the HPC-AI broader market on-premises forecast. 

TABLE 1 

HPC-AI Broader Market On-premises Revenue Forecast 2020-2026 

($M) 2022 2023 2024 2025 2026 2027 2028 
CAGR 

23-28 

Server  $18,805 $20,735 $25,390 $29,559 $33,699 $37,797 $41,777 15.0% 

Storage  $6,380 $6,282 $7,692 $8,745 $9,771 $10,738 $11,846 13.5% 

Middleware  $1,781 $1,711 $2,026 $2,241 $2,468 $2,691 $2,968 11.6% 

Applications  $5,069 $4,830 $5,684 $6,267 $6,878 $7,468 $8,240 11.3% 

Service  $2,214 $2,014 $2,262 $2,411 $2,498 $2,696 $2,973 8.1% 

Total Revenue $34,250 $35,573 $43,054 $49,223 $55,315 $61,390 $67,805 13.8% 

Source: Hyperion Research, 2024 

 

THE "-ABILITIES": DEFINITIONS AND METRICS  

The "-abilities" examined in this white paper are reliability, availability, and durability. The terms are 

related, but not interchangeable. 

Reliability 

Reliability refers to how often a system experiences failure. Storage systems can be designed with 

varying degrees of redundancy such that they are still functional while parts of the system have failed. 

Reliability is typically measured as Mean Time Between Failure (MTBF) in hours. 

Availability 

Availability refers to the ability to get to the data. Factors that impact a system's availability include 

redundancy and how long it may take to recover from a failure mode (Mean Time to Recover, or MTTR). 

In order for a system to be available, some form of redundancy must be designed into the system. 

There is typically some amount of performance degradation and/or loss of redundancy while a system is 

operating under a failure condition (e.g., a disk drive fails). Availability is typically expressed as the 

percentage of time it is operational in a year in terms of "9s". Table 2 provides a model that describes 

availability. 
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TABLE 2 

Representation of Availability 

# of Nines Annual % Uptime Minute Online per Year Minutes Offline per Year 

1 90% 473,040 52,560 (36.5 days) 

2 99% 520,344 5,256 (3.7 days) 

3 99.9% 525,074 525.6 (8.8 hours) 

4 99.99% 525,547 52.6 (< 1 hour) 

5 99.999% 525,595 5.3 

6 99.9999% 525,599 0.5 

Source: Hyperion Research, 2024 

 

Durability 

Durability refers to the data existing on the storage media as it was written when the application reads 

the data. In other words, there has been no data corruption or data loss. Durability is typically measured 

as a probability for data loss (data loss incurred by a solution across a configuration of systems within 

the solution) or mean time to data loss (MTTDL). Table 3 describes a model for understanding 

durability. 

TABLE 3 

Representation of Durability 

# of Nines Percentage Data Loss within a Defined System 

1 90% 1  object* with data loss within a configuration of 10 objects 

2 99% 1  object with data loss within a configuration of 100 objects 

3 99.9% 1  object with data loss within a configuration of 1,000 objects 

4 99.99% 1  object with data loss within a configuration of 10,000 objects 

5 99.999% 1  object with data loss within a configuration of 100,000 objects 

6 99.9999% 1 object with data loss within a configuration of 1,000,000 objects 

7 99.99999% 1 object with data loss within a configuration of 10,000,000 objects 

8 99.999999% 1 object with data loss within a configuration of 100,000,000 objects 

9 99.9999999% 1 object with data loss within a configuration of 1,000,000,000 objects 

10 99.99999999% 1 object with data loss within a configuration of 10,000,000,000 objects 

11 99.999999999% 1 object with data loss within a configuration of 100,000,000,000 objects 

Note: *An object is defined as the lowest common denominator unit that can be lost that will contribute to data loss, depending on the level and 

type of redundancy and protection. Within a storage system, for example, an object could be a file or a complete storage system. 

Source: Hyperion Research, 2024 
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Taken together, how a system is architected to address reliability, availability, and durability determines 

how resilient the system is. Table 4 summarizes definitions and metrics for these -abilities. 

TABLE 4 

"-ability" Definitions and Metrics 

Term Definition Typical Metrics 

Reliability The probability that a storage system will function 

correctly without failure during a specific period. 

Mean Time Between Failure (MTBF) 

Availability The ability to get to the data. 

The percentage of time a storage system is operational 

and accessible for use. It is often expressed as a 

percentage of uptime, such as 99.999% (five nines) 

% of uptime, often expressed a "9s" (e.g., 

99.999%, or 5 9s) 

Durability The ability of the data to last. 

The ability of a storage system to preserve data without 

loss or corruption over time. 

Data durability percentage (e.g., 99.99995%) 

Data loss probability (e.g., 0.00005% chance 

of loss) 

Mean Time to Data Loss (MTTDL) 

Source: Hyperion Research, 2024 

 

Note that durability is required for a system to achieve availability, while a system can be durable and 

not be available. Consider a safe with a combination lock. The safe may be indestructible (e.g., durable) 

and the contents are safe from flood and fire and will be there when the safe is opened. If, however, the 

combination is lost or forgotten, the contents of the safe are not available. And conversely, the 

combination may be known, but if the safe is not water-tight, the contents may be destroyed when it is 

opened if there has been a flood. The safe must be durable in order for it to be available. 

THE IMPORTANCE OF AVAILABILITY AND DURABILITY 

Using the broader market spending breakout as a proxy for initial purchase costs for an on-premises 

system, servers and storage comprise approximately 50% and 20%, respectively, of the initial 

purchase expense. Systems that don't provide adequate availability and durability risk sitting idle 

should any failures cause downtime. 

When considering the costs of today's leadership machines, particularly those that employ thousands 

of GPUs for accelerated modern AI workloads, it's imperative that the computing nodes be able to 

access and retrieve the required data. Should the storage system be unable to provide the data when 

it's needed, the expensive GPUs sit underutilized. Making proper investments to achieve high levels of 

availability and durability in the "20%" storage element costs is needed to ensure high utilization of the 

"50%" server element costs, as referenced above. 

Efficiency costs are equally, if not more, critical than equipment expense to consider relative to system 

downtime. Engineers performing complex physics-based simulations may sit idle or need to re-run 

jobs if their systems go down. Time to science and discovery is extended should scientists' and 

researchers' systems be impacted, not to mention the integrity of their results could be compromised in 

the event of any data loss or corruption. Consider some specific examples from select verticals which 

heavily employ HPC-AI infrastructure: 
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▪ Seismic processing: The integrity of data directly impacts the accuracy of subsurface imaging 

and resource exploration. Any data corruption can lead to significant misinterpretations and 

costly errors. 

▪ Life sciences: Research and clinical trials rely on precise data to drive drug discovery and 

patient outcomes. Here, data availability is paramount; any disruption could hinder vital 

research processes or delay critical advancements in healthcare. 

▪ Weather analysis: Accurate and timely data is essential for predicting and responding to 

environmental changes. The ability to access reliable data quickly can significantly affect 

forecasting accuracy and disaster response efforts. 

Business impact can be even more significant should systems not have enough availability or 

durability. Data center operations that support hundreds or thousands of businesses would stand to 

lose substantial revenue or long-term business contracts should systems go down and/or data be lost. 

ARCHITECTING FOR THE "-ABILITIES" 

Anatomy of an HPC-AI Storage System 

Storage systems incorporate a number of architectural elements that impact their performance and "-

ability" characteristics, including:  

▪ Systems that house the controllers (RAID) and physical devices (HDDs, SSDs) that 

respectively provide the storage services (replication, snapshots, redundancy) and storage 

media that manage, store and maintain the data 

▪ Expansion storage enclosures to provide additional storage media that scales out from a 

storage server 

▪ File systems and servers dedicated to running the file system inclusive of primary storage, 

metadata storage and archive storage 

▪ Storage interconnect switches and cabling that provide the connectivity between HPC-AI 

compute servers and storage servers, and between storage servers and enclosures 

Redundancy 

Most storage systems, whether they be on-premises or cloud-based storage resources, employ some 

form of redundancy by distributing the data across multiple storage devices and applying a striping and 

parity algorithm. RAID and erasure coding are the predominant methods of doing this. 

RAID 

RAID combines multiple disk drive components into a logical unit for the purposes of data redundancy 

and distributes the data and parity calculated from the data across multiple storage devices. In the 

event of a device failure, the data can be reconstructed from the parity information and be made 

available to the application. The level of protection and performance under failure and reconstruction is 

determined by the number of physical devices defined for the system and the allocation of data 

capacity and parity capacity desired. Tradeoffs can be made between the level of durability and 

availability required by the application and the budget constraints for the storage infrastructure. 

RAID has been widely used in on-premises enterprise storage systems, providing a reliable method for 

data protection and performance enhancement in traditional disk-based storage environments. 
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Erasure Coding 

Erasure coding is a method of data protection in which data is broken into fragments, expanded, and 

encoded with redundant data pieces, then stored across a set of different locations or storage media. 

The goal of erasure coding is to allow for data recovery even when some fragments are lost or 

corrupted. Unlike traditional RAID, which typically uses simple parity or mirroring, erasure coding 

employs more sophisticated mathematical algorithms to achieve higher storage efficiency while 

maintaining or improving data durability. 

Erasure coding is particularly well-suited for distributed storage systems and cloud environments, 

where data is spread across multiple nodes or even geographic locations. Erasure coding has gained 

popularity in recent years, especially in object storage systems and large-scale cloud storage 

platforms. 

Table 5 compares the redundancy methods against several criteria. 

TABLE 5 

Comparison of RAID and Erasure Coding Redundancy Methods 

Criteria RAID Erasure Coding 

Flexibility Moderate (limited to predefined RAID levels)  High (customizable protection schemes)  

Scalability Limited (typically bound to a single array or node) High (can scale across multiple nodes or 

locations) 

Performance Good (for small-scale systems; can be a 

bottleneck in large systems)  

Moderate to high (depends on implementation)  

Cost Moderate (may require specialty hardware for 

optimal performance)  

Low to moderate (can be implemented on 

commodity hardware)  

Risk of data loss  Low to moderate (depending on RAID level)   Very low (especially in distributed systems)  

Durability Good (protects against drive failures)  Excellent (can protect against media, node, or 

site failures)  

Resource Utilization  Moderate (fixed overhead based on RAID levels)   Efficient (customizable overhead)  

Source: Hyperion Research, 2024 

 

In addition to RAID and erasure coding techniques, redundancy can also be architected into the 

controller and interconnect elements of the storage system. Dual controllers with failover capabilities 

protect against a controller failure and can provide multiple paths to the storage devices.  

Failure Domains 

Considerations need to be made for how broadly a failure within a part of the storage system will 

impact the entire storage system or cluster. Sometimes referred to as the "blast radius", the smaller the 

failure domain, the least impact to the system. Availability and durability can be achieved regardless of 

the size of the failure domain, with corresponding cost and performance tradeoffs.  

Performance Under Failure and Rebuild/Reconstruction 

Highly available systems are operational while a failure exists within the system. System performance 

may be sustained or de-graded while the failure condition exists, depending on the RAID or erasure 
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coding design as some of the system performance may diverted to returning it to an optimal state. 

Techniques can be employed to ensure degraded performance does not dip below a specified 

threshold of required sustained performance. 

The longer it takes to return to an optimal state, the higher the chances of an additional failure to 

impact the system's availability, depending on how much redundancy has been implemented. 

Additional performance could be designed into the system, or overprovisioned, to accommodate faster 

reconstruction times and minimize a system's window of vulnerability to a failure that would take it 

offline. 

BEST PRACTICES WHEN CONSIDERING HPC-AI STORAGE AVAILABILITY AND 

DURABILITY 

One size does not fit all when it comes determining how much availability and durability are "enough" 

for a given workload or user need. Users and vendors alike can greatly influence optimizing the 

system's TCO relative to availability and durability. 

Users 

First and foremost, users need to understand their risk profile for downtime. Several areas to 

understand include: 

▪ How much downtime can the business afford? 

▪ How much business is lost if the data is corrupted or not available? 

▪ Are other resources (e.g., personnel, data products or services) sitting idle if the data is not 

available for them to run their simulations or experiments? 

▪ Can the budget support the expense required to attain the desired levels of availability and 

durability? 

▪ What is the minimum performance degradation that can be tolerated if the system is operating 

with a failure condition? 

▪ How long is acceptable for the system to be operating with degraded performance? 

Once the above parameters are established, users should include specific requirements for availability 

and durability in the RFIs, RFPs, and RFQs they provide to vendors in assessing sourcing options. 

This applies both to infrastructure being acquired on-premises, as well as determining whether cloud-

based resources are appropriate. 

Vendors 

Recognizing that users will have varying degrees of availability and durability requirements, vendors 

should provide: 

▪ Flexibility for users to determine related tradeoffs (e.g., performance, cost)  

▪ Design and configuration guidelines for users to achieve desired availability and durability 

goals 

▪ Telemetry for users to monitor the system's availability and durability 

Additionally, vendors should continue to invest and innovate in this area. While performance 

capabilities tend to receive the lion's share of investment, it is essential for systems to not only be fast 

but also to ensure that data is readily available and intact. If the data necessary for engineering 
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simulations or training AI models is inaccessible or corrupt, then high performance becomes irrelevant. 

A balanced approach that prioritizes business-required speed and data availability/durability will lead 

to a more effective solution.  

FUTURE OUTLOOK 

Storage is a critical element of leading HPC-AI system architectures. While performance capabilities of 

the storage platform are important, they are not the only factors that define leadership for HPC-AI 

storage solutions. Availability and durability are also essential elements, and their importance is 

growing in the assessment of HPC-AI storage leadership.  

Data quality and reliability are becoming increasingly important in the age of AI, particularly relative to 

training AI models. Corrupt data can lead to inaccurate models and producing unreliable inferencing. 

No data (e.g., the storage system is down and unable to provide any data for training) causes 

expensive resources to sit idle and impacts delivery time for new models and updates to existing 

models with current information. 

Users cannot tolerate any data loss or corruption in any form. Durability will continue to be an absolute 

de facto table stakes requirement for any storage system to be considered for today's HPC and AI 

workloads. Availability should also be non-negotiable in most cases, although some users do have 

varying degrees of tolerance. The more availability a system can provide, the less impact there will be 

to user business, engineering simulation performance and results, and scientific research capabilities. 

Ultimately, users and vendors who fully understand and balance the "-abilities" including the newly 

emergent durability, alongside performance and budget considerations may realize greater returns on 

their investments. By prioritizing both data integrity and availability, organizations can enhance their 

HPC workloads across all workloads, ensuring robust performance and impactful outcomes.  
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Hyperion Research provides data-driven research, analysis and recommendations for technologies, 

applications, and markets in high performance computing and emerging technology areas to help 

organizations worldwide make effective decisions and seize growth opportunities. Research includes 
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